This forum has been archived. All content is frozen. Please use KDE Discuss instead.

SVD of a complex matrix

Tags: None
(comma "," separated)
cpivot
Registered Member
Posts
1
Karma
0

SVD of a complex matrix

Wed Oct 29, 2014 12:25 pm
Hello,
I'm try to perform the SVD of a complex matrix.
For exemple, this code :

Code: Select all
#include <iostream>
#include <complex>
#include <Eigen/Dense>
#include <Eigen/SVD>


using namespace std;
using namespace Eigen;

int main()
{
   Matrix3cd A;
   A << -2, -2, -9, -1, 1, -3, 1, 1, 4;
   A(0,0)=complex<double>(-2,1);
   cout << "Here is the matrix A:\n" << A << endl;

   JacobiSVD<MatrixXcd> svd(A, ComputeFullU | ComputeFullV);
   cout << "Its singular values are:" << endl << svd.singularValues() << endl;
   cout << "Its left singular vectors are the columns of the thin U matrix:" << endl << svd.matrixU() << endl;
   cout << "Its right singular vectors are the columns of the thin V matrix:" << endl << svd.matrixV() << endl;
   cout << (svd.matrixU() * svd.singularValues().asDiagonal() * svd.matrixV().transpose() - A).norm() << endl;
   
}


gives me this :
Code: Select all
Here is the matrix A:
(-2,1) (-2,0) (-9,0)
(-1,0)  (1,0) (-3,0)
 (1,0)  (1,0)  (4,0)
Its singular values are:
 10.7767
 1.64134
0.411582
Its left singular vectors are the columns of the thin U matrix:
 (-0.879376,0.00595416)    (0.22305,-0.0956365)    (-0.350887,0.211288)
(-0.270582,-0.00768811)    (-0.863744,0.422099)    (0.035271,0.0355187)
  (0.391577,0.00747394)  (-0.0880244,0.0955685)    (-0.775269,0.478214)
Its right singular vectors are the columns of the thin V matrix:
   (0.225196,0.0819019)    (0.142557,-0.218302)     (0.249092,0.901418)
 (0.174428,-0.00112488)    (-0.851665,0.431929)   (-0.0928714,0.221481)
(0.955067,-5.82171e-05)   (0.141158,-0.0141917)   (-0.118827,-0.231519)

2.50259


As you can notice, the norm of (USV*-A) is not close to 0.
If you change the third line of the code with A(0,0)=complex<double>(-2,0);
The norm is now : 3.02828e-15 and the result is OK compared to matlab.
I think that there is bug with SVD of a complex Matrix.

Do you have an idea to solve this problem?
Thank's
Bye
User avatar
ggael
Moderator
Posts
3447
Karma
19
OS

Re: SVD of a complex matrix

Wed Oct 29, 2014 12:32 pm
You are taking the transpose of V instead of its adjoint. The correct test is:

cout << (svd.matrixU() * svd.singularValues().asDiagonal() * svd.matrixV().adjoint() - A).norm() << endl;


Bookmarks



Who is online

Registered users: Bing [Bot], Google [Bot], Yahoo [Bot]